2022中國科學(xué)院大學(xué)高等數(shù)學(xué)(乙)碩士研究生考研考試大綱

發(fā)布時(shí)間:2021-09-01 編輯:考研派小莉 推薦訪問:
2022中國科學(xué)院大學(xué)高等數(shù)學(xué)(乙)碩士研究生考研考試大綱

2022中國科學(xué)院大學(xué)高等數(shù)學(xué)(乙)碩士研究生考研考試大綱內(nèi)容如下,更多考研資訊請關(guān)注我們網(wǎng)站的更新!敬請收藏本站,或下載我們的考研派APP和考研派微信公眾號(里面有非常多的免費(fèi)考研資源可以領(lǐng)取,有各種考研問題,也可直接加我們網(wǎng)站上的研究生學(xué)姐微信,全程免費(fèi)答疑,助各位考研一臂之力,爭取早日考上理想中的研究生院校。)

2022中國科學(xué)院大學(xué)高等數(shù)學(xué)(乙)碩士研究生考研考試大綱 正文

一、 考試性質(zhì)
中國科學(xué)院大學(xué)碩士研究生入學(xué)高等數(shù)學(xué)(乙)考試是為招收理學(xué)非數(shù)學(xué)專業(yè)碩士研究生而設(shè)置的選拔考試。它的主要目的是測試考生的數(shù)學(xué)素質(zhì),包括對高等數(shù)學(xué)各項(xiàng)內(nèi)容的掌握程度和應(yīng)用相關(guān)知識解決問題的能力。考試對象為參加全國碩士研究生入學(xué)考試、并報(bào)考大氣物理學(xué)與大氣環(huán)境、氣象學(xué)、天文技術(shù)與方法、地球流體力學(xué)、固體地球物理學(xué)、礦物學(xué)、巖石學(xué)、礦床學(xué)、構(gòu)造地質(zhì)學(xué)、第四紀(jì)地質(zhì)學(xué)、地圖學(xué)與地理信息系統(tǒng)、自然地理學(xué)、人文地理學(xué)、古生物學(xué)與地層學(xué)、生物物理學(xué)、生物化學(xué)與分子生物學(xué)、物理化學(xué)、無機(jī)化學(xué)、分析化學(xué)、高分子化學(xué)與物理、地球化學(xué)、海洋化學(xué)、海洋生物學(xué)、植物學(xué)、生態(tài)學(xué)、環(huán)境科學(xué)、環(huán)境工程、土壤學(xué)等專業(yè)的考生。
二、考試的基本要求
要求考生比較系統(tǒng)地理解高等數(shù)學(xué)的基本概念和基本理論,掌握高等數(shù)學(xué)的基本方法。要求考生具有抽象思維能力、邏輯推理能力、空間想象能力、數(shù)學(xué)運(yùn)算能力和綜合運(yùn)用所學(xué)的知識分析問題和解決問題的能力。
三、考試方式和考試時(shí)間
高等數(shù)學(xué)(乙)考試采用閉卷筆試形式,試卷滿分為 150 分,考試時(shí)間為 180 分鐘。
四、考試內(nèi)容和考試要求
(一)函數(shù)、極限、連續(xù)
考試內(nèi)容
函數(shù)的概念及表示法 函數(shù)的有界性、單調(diào)性、周期性和奇偶性 復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù) 基本初等函數(shù)的性質(zhì)及其圖形
數(shù)列極限與函數(shù)極限的概念 無窮小和無窮大的概念及其關(guān)系 無窮小的性質(zhì)及無窮小的比較 極限的四則運(yùn)算 極限存在的單調(diào)有界準(zhǔn)則和夾逼準(zhǔn)則 兩個重要極限:
lim sin x ? 1 , lim(1 ? 1 ) x  ? e
x?0 x x???x
函數(shù)連續(xù)的概念 函數(shù)間斷點(diǎn)的類型 初等函數(shù)的連續(xù)性 閉區(qū)間上連續(xù)函數(shù)的性質(zhì) 函數(shù)的一致連續(xù)性概念
考試要求
1.理解函數(shù)的概念,掌握函數(shù)的表示法,并會建立簡單應(yīng)用問題中的函數(shù)關(guān)系式。
2.理解函數(shù)的有界性、單調(diào)性、周期性和奇偶性。掌握判斷函數(shù)這些性質(zhì)的方法。
3.理解復(fù)合函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念。會求給定函數(shù)的復(fù)合函數(shù)和反函數(shù)。
4.掌握基本初等函數(shù)的性質(zhì)及其圖形。
5.理解極限的概念,理解函數(shù)左極限與右極限的概念,以及函數(shù)極限存在與左、右極限之間的關(guān)系。
6.掌握極限的性質(zhì)及四則運(yùn)算法則,會運(yùn)用它們進(jìn)行一些基本的判斷和計(jì)算。
7.掌握極限存在的兩個準(zhǔn)則,并會利用它們求極限。掌握利用兩個重要極限求極限的方法。
8.理解無窮小、無窮大的概念,掌握無窮小的比較方法,會用等價(jià)無窮小求極限。
9.理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數(shù)間斷點(diǎn)的類型。
10.掌握連續(xù)函數(shù)的運(yùn)算性質(zhì)和初等函數(shù)的連續(xù)性,熟悉閉區(qū)間上連續(xù)函數(shù)的性質(zhì)
(有界性、最大值和最小值定理、介值定理等),并會應(yīng)用這些性質(zhì)。
(二)一元函數(shù)微分學(xué)
考試內(nèi)容
導(dǎo)數(shù)的概念 導(dǎo)數(shù)的幾何意義和物理意義 函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系 平面曲線的切線和法線 基本初等函數(shù)的導(dǎo)數(shù) 導(dǎo)數(shù)的四則運(yùn)算 復(fù)合函數(shù)、反函數(shù)、隱函數(shù)的導(dǎo)數(shù)的求法 參數(shù)方程所確定的函數(shù)的求導(dǎo)方法 高階導(dǎo)數(shù)的概念 高階導(dǎo)數(shù)的求法 微分的概念和微分的幾何意義 函數(shù)可微與可導(dǎo)的關(guān)系 微分的運(yùn)算法則及函數(shù)微分的求法 一階微分形式的不變性 微分在近似計(jì)算中的應(yīng)用 微分中值定理 洛必達(dá)(L’Hospital)法則 泰勒(Taylor)公式 函數(shù)的極值 函數(shù)最大值和最小值 函數(shù)單調(diào)性 函數(shù)圖形的凹凸性、拐點(diǎn)及漸近線 函數(shù)圖形的描繪
考試要求
1.理解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會求平面曲線的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,會用導(dǎo)數(shù)描述一些物理量,掌握函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系。
2.掌握導(dǎo)數(shù)的四則運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的求導(dǎo)公式。了解微分的四則運(yùn)算法則和一階微分形式的不變性,會求函數(shù)的微分。
3.了解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的 n 階導(dǎo)數(shù)。
4.會求分段函數(shù)的一階、二階導(dǎo)數(shù)。
5.會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)的一階、二階導(dǎo)數(shù)
6.會求反函數(shù)的導(dǎo)數(shù)。
7.理解并會用羅爾定理、拉格朗日中值定理和泰勒定理。
8.理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)最大值和最小值的求法及其簡單應(yīng)用。
9.會用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性,會求函數(shù)圖形的拐點(diǎn)以及水平、鉛直和斜漸近線,會描繪函數(shù)的圖形。
10.掌握用洛必達(dá)法則求未定式極限的方法。
(三)一元函數(shù)積分學(xué)
考試內(nèi)容
原函數(shù)和不定積分的概念 不定積分的基本性質(zhì) 基本積分公式 定積分的概念和基本性質(zhì) 定積分中值定理 變上限定積分定義的函數(shù)及其導(dǎo)數(shù) 牛頓-萊布尼茨(Newton- Leibniz)公式 不定積分和定積分的換元積分法與分部積分法 有理函數(shù)、三角函數(shù)的有理式和簡單無理函數(shù)的積分 廣義積分(無窮限積分、瑕積分) 定積分的應(yīng)用
考試要求
1.理解原函數(shù)的概念,理解不定積分和定積分的概念。
2.熟練掌握不定積分的基本公式,掌握不定積分和定積分的性質(zhì)及定積分中值定理。掌握牛頓-萊布尼茨公式。掌握不定積分和定積分的換元積分法與分部積分法。
3.會求有理函數(shù)、三角函數(shù)有理式和簡單無理函數(shù)的積分。
4.理解變上限定積分定義的函數(shù),會求它的導(dǎo)數(shù)。
5.理解廣義積分(無窮限積分、瑕積分)的概念,掌握無窮限積分、瑕積分的收斂性判別法,會計(jì)算一些簡單的廣義積分。
6.掌握用定積分表達(dá)和計(jì)算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長、旋轉(zhuǎn)體的體積及側(cè)面積、截面面積為已知的立體體積、功、引力、壓力)及函數(shù)的平均值。
(四)向量代數(shù)和空間解析幾何
考試內(nèi)容
向量的概念 向量的線性運(yùn)算 向量的數(shù)量積、向量積和混合積 兩向量垂直、平行的條件 兩向量的夾角 向量的坐標(biāo)表達(dá)式及其運(yùn)算 單位向量 方向數(shù)與方向余弦 曲面方程和空間曲線方程的概念 平面方程、直線方程 平面與平面、平面與直線、直線與直線的夾角以及平行、垂直的條件 點(diǎn)到平面和點(diǎn)到直線的距離 球面 母線平行于坐標(biāo)軸的柱面 旋轉(zhuǎn)軸為坐標(biāo)軸的旋轉(zhuǎn)曲面的方程 常用的二次曲面方程及其圖形 空間曲線的參數(shù)方程和一般方程 空間曲線在坐標(biāo)面上的投影曲線方程
考試要求
1.熟悉空間直角坐標(biāo)系,理解向量及其模的概念。
2.熟悉向量的運(yùn)算(線性運(yùn)算、數(shù)量積、向量積),掌握兩個向量垂直、平行的條件。
3.理解方向數(shù)與方向余弦、向量的坐標(biāo)表達(dá)式,會用坐標(biāo)表達(dá)式進(jìn)行向量的運(yùn)算。
4.熟悉平面方程和空間直線方程的各種形式,熟練掌握平面方程和空間直線方程的求
法。
5.會求平面與平面、平面與直線、直線與直線之間的夾角,并會利用平面、直線的相
互關(guān)系(平行、垂直、相交等)解決有關(guān)問題。
6.會求空間兩點(diǎn)間的距離、點(diǎn)到直線的距離以及點(diǎn)到平面的距離。
7.了解空間曲線方程和曲面方程的概念。
8.了解空間曲線的參數(shù)方程和一般方程。了解空間曲線在坐標(biāo)平面上的投影,并會求其方程。
9.了解常用二次曲面的方程、圖形及其截痕,會求以坐標(biāo)軸為旋轉(zhuǎn)軸的旋轉(zhuǎn)曲面及母線平行于坐標(biāo)軸的柱面方程。
(五)多元函數(shù)微分學(xué)
考試內(nèi)容
多元函數(shù)的概念 二元函數(shù)的幾何意義 二元函數(shù)的極限和連續(xù) 有界閉區(qū)域上多元連續(xù)函數(shù)的性質(zhì)  多元函數(shù)偏導(dǎo)數(shù)和全微分的概念及求法  多元復(fù)合函數(shù)、隱函數(shù)的求導(dǎo)法高階偏導(dǎo)數(shù)的求法 空間曲線的切線和法平面 曲面的切平面和法線 方向?qū)?shù)和梯度 二元函數(shù)的泰勒公式 多元函數(shù)的極值和條件極值 拉格朗日乘數(shù)法 多元函數(shù)的最大值、最小值及其簡單應(yīng)用
考試要求
1.理解多元函數(shù)的概念、理解二元函數(shù)的幾何意義。
2.理解二元函數(shù)的極限與連續(xù)性的概念及基本運(yùn)算性質(zhì),了解有界閉區(qū)域上連續(xù)函數(shù)的性質(zhì),會判斷二元函數(shù)在已知點(diǎn)處極限的存在性和連續(xù)性。
3.理解多元函數(shù)偏導(dǎo)數(shù)和全微分的概念 了解二元函數(shù)可微、偏導(dǎo)數(shù)存在及連續(xù)的關(guān)系,會求偏導(dǎo)數(shù)和全微分。
4.熟練掌握多元復(fù)合函數(shù)偏導(dǎo)數(shù)的求法。
5.掌握隱函數(shù)的求導(dǎo)法則。
6.理解方向?qū)?shù)與梯度的概念并掌握其計(jì)算方法。
7.理解曲線的切線和法平面及曲面的切平面和法線的概念,會求它們的方程。
8.了解二元函數(shù)的二階泰勒公式。
9.理解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求簡單多元函數(shù)的最大值、最小值,并會解決一些簡單的應(yīng)用問題。
(六)多元函數(shù)積分學(xué)
考試內(nèi)容
二重積分、三重積分的概念及性質(zhì) 二重積分與三重積分的計(jì)算和應(yīng)用 兩類曲線積分的概念、性質(zhì)及計(jì)算 兩類曲線積分之間的關(guān)系 格林(Green)公式 平面曲線積分與路徑無關(guān)的條件 已知全微分求原函數(shù) 兩類曲面積分的概念、性質(zhì)及計(jì)算 兩類曲面積分之間的關(guān)系 高斯(Gauss)公式 斯托克斯(Stokes)公式 散度、旋度的概念及計(jì)算 曲線積分和曲面積分的應(yīng)用
考試要求
1.理解二重積分、三重積分的概念,掌握重積分的性質(zhì)。
2.熟練掌握二重積分的計(jì)算方法(直角坐標(biāo)、極坐標(biāo)),會計(jì)算三重積分(直角坐標(biāo)、柱面坐標(biāo)、球面坐標(biāo)),掌握二重積分的換元法。
3.理解兩類曲線積分的概念,了解兩類曲線積分的性質(zhì)及兩類曲線積分的關(guān)系。熟練掌握計(jì)算兩類曲線積分的方法。
4.熟練掌握格林公式,會利用它求曲線積分。掌握平面曲線積分與路徑無關(guān)的條件。會求全微分的原函數(shù)。
5.理解兩類曲面積分的概念,了解兩類曲面積分的性質(zhì)及兩類曲面積分的關(guān)系。熟練掌握計(jì)算兩類曲面積分的方法。
6.掌握高斯公式和斯托克斯公式,會利用它們計(jì)算曲面積分和曲線積分。
7.了解散度、旋度的概念,并會計(jì)算。
8.會用重積分、曲線積分及曲面積分求一些幾何量與物理量(平面圖形的面積、曲面的面積、物體的體積、曲線的弧長、物體的質(zhì)量、重心、轉(zhuǎn)動慣量、引力、功及流量等)。
(七)無窮級數(shù)
考試內(nèi)容
常數(shù)項(xiàng)級數(shù)及其收斂與發(fā)散的概念 收斂級數(shù)的和的概念 級數(shù)的基本性質(zhì)與收斂的必要條件 幾何級數(shù)與 p 級數(shù)及其收斂性 正項(xiàng)級數(shù)收斂性的判別法 交錯級數(shù)與萊布尼茨定理任意項(xiàng)級數(shù)的絕對收斂與條件收斂 函數(shù)項(xiàng)級數(shù)的收斂域、和函數(shù)的概念 冪級數(shù)及其收斂半徑、收斂區(qū)間(指開區(qū)間)和收斂域 冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì) 簡單冪級數(shù)的和函數(shù)的求法 泰勒級數(shù) 初等函數(shù)的冪級數(shù)展開式 函數(shù)的冪級數(shù)展開式在近似計(jì)算中的應(yīng)用 函數(shù)的傅里葉(Fourier)系數(shù)與傅里葉級數(shù) 狄利克雷(Dirichlet)定理 函數(shù)在[-l,l] 上的傅里葉級數(shù) 函數(shù)在[0,l]上的正弦級數(shù)和余弦級數(shù)。
考試要求
1.理解常數(shù)項(xiàng)級數(shù)的收斂、發(fā)散以及收斂級數(shù)的和的概念,掌握級數(shù)的基本性質(zhì)及收斂的必要條件
2.掌握幾何級數(shù)與 p 級數(shù)的收斂與發(fā)散情況。
3.熟練掌握正項(xiàng)級數(shù)收斂性的各種判別法。
4.熟練掌握交錯級數(shù)的萊布尼茨判別法。
5.理解任意項(xiàng)級數(shù)的絕對收斂與條件收斂的概念,以及絕對收斂與條件收斂的關(guān)系。
6.了解函數(shù)項(xiàng)級數(shù)的收斂域及和函數(shù)的概念。
7.理解冪級數(shù)的收斂域、收斂半徑的概念,掌握冪級數(shù)的收斂半徑及收斂域的求法。
8.了解冪級數(shù)在其收斂區(qū)間內(nèi)的一些基本性質(zhì)(和函數(shù)的連續(xù)性、逐項(xiàng)微分和逐項(xiàng)積分),會求一些冪級數(shù)在收斂區(qū)間內(nèi)的和函數(shù),并會由此求出某些數(shù)項(xiàng)級數(shù)的和。
9.了解函數(shù)展開為泰勒級數(shù)的充分必要條件。
10.掌握一些常見函數(shù)如 ex、sin x、cos x、ln(1+x)和(1+x)α 等的麥克勞林展開式,會用它們將一些簡單函數(shù)間接展開成冪級數(shù)。
11.會利用函數(shù)的冪級數(shù)展開式進(jìn)行近似計(jì)算。
12.了解傅里葉級數(shù)的概念和狄利克雷定理,會將定義在[-l,l]上的函數(shù)展開為傅里葉級數(shù),會將定義在[0,l]上的函數(shù)展開為正弦級數(shù)與余弦級數(shù)。
(八)常微分方程
考試內(nèi)容
常微分方程的基本概念 變量可分離的微分方程 齊次微分方程 一階線性微分方程 伯努利(Bernoulli)方程 全微分方程 可用簡單的變量代換求解的某些微分方程 可降價(jià)的高階微分方程 線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理 二階常系數(shù)齊次線性微分方程 二階常系數(shù)非齊次線性微分方程 高于二階的某些常系數(shù)齊次線性微分方程  歐拉(Euler)方程微分方程的簡單應(yīng)用
考試要求
1.掌握微分方程及其階、解、通解、初始條件和特解等概念。
2.熟練掌握變量可分離的微分方程的解法,熟練掌握解一階線性微分方程的常數(shù)變易
法。
3.會解齊次微分方程、伯努利方程和全微分方程,會用簡單的變量代換解某些微分方
程。
4.會用降階法解下列方程:y(n) =f(x),y″ =f(x,y′ )和 y″ =f(y,y′ )
5.理解線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理。
6.掌握二階常系數(shù)齊次線性微分方程的解法,并會解某些高于二階的常系數(shù)齊次線性
微分方程。
7.會解自由項(xiàng)為多項(xiàng)式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)、以及它們的和與積的二階常系數(shù)非齊次線性微分方程。
8.會解歐拉方程。
9.用微分方程解決一些簡單的應(yīng)用問題。
五、主要參考文獻(xiàn)

《高等數(shù)學(xué)》(上、下冊),同濟(jì)大學(xué)數(shù)學(xué)教研室主編,高等教育出版社,1996 年第四版,以及其后的任何一個版本均可。
中國科學(xué)院大學(xué)

添加中國科學(xué)院大學(xué)學(xué)姐微信,或微信搜索公眾號“考研派小站”,關(guān)注[考研派小站]微信公眾號,在考研派小站微信號輸入[中國科學(xué)院大學(xué)考研分?jǐn)?shù)線、中國科學(xué)院大學(xué)報(bào)錄比、中國科學(xué)院大學(xué)考研群、中國科學(xué)院大學(xué)學(xué)姐微信、中國科學(xué)院大學(xué)考研真題、中國科學(xué)院大學(xué)專業(yè)目錄、中國科學(xué)院大學(xué)排名、中國科學(xué)院大學(xué)保研、中國科學(xué)院大學(xué)公眾號、中國科學(xué)院大學(xué)研究生招生)]即可在手機(jī)上查看相對應(yīng)中國科學(xué)院大學(xué)考研信息或資源。

中國科學(xué)院大學(xué)考研公眾號 考研派小站公眾號

本文來源:http://www.lyhuahuisp.com/guokeda/cankaoshumu_461886.html

推薦閱讀