2018年首都師范大學(xué)生命科學(xué)學(xué)院馬力耕導(dǎo)師考研調(diào)劑信..
【考研派 okaoyan.com】 為大家提供2018年首都師范大學(xué)生命科學(xué)學(xué)院馬力耕導(dǎo)師考研調(diào)劑信..,更多考研資訊請關(guān)注我們網(wǎng)站的更新!敬請收藏本站。
馬力耕,男,教授,博士生導(dǎo)師,
國家杰出青年基金獲得者,北京市特聘教授,
北京市高層次人才引進計劃入選者。
聯(lián)系方式:ligeng.ma@cnu.edu.cn
教育經(jīng)歷
1987年:河北師范大學(xué)生物學(xué)系學(xué)士學(xué)位
1990年:河北師范大學(xué)生物學(xué)系碩士學(xué)位
1997年:中國農(nóng)業(yè)大學(xué)生物學(xué)院博士學(xué)位
工作主要經(jīng)歷
2011.12- 今 首都師范大學(xué)生命科學(xué)學(xué)院教授、博士研究生導(dǎo)師
2010.1 - 2011.12河北師范大學(xué)生命科學(xué)學(xué)院教授、博士研究生導(dǎo)師
2005.1 - 2010.1 北京生命科學(xué)研究所研究員、博士研究生導(dǎo)師
2000.8 - 2004.12美國耶魯大學(xué)分子、細胞和發(fā)育生物學(xué)系博士后
1996.6 - 2000.8 河北師范大學(xué)生物學(xué)系教授(1998年起博士研究生導(dǎo)師)
1990.7 - 1996.6 河北師范大學(xué)生物學(xué)系助教、講師
社會兼職
國際學(xué)術(shù)刊物《BMC Plant Biology》Associate editor(副主編)(2009年起)。
獲獎或榮譽情況
國家自然科學(xué)獎二等獎(排名第三)
國家杰出青年基金獲得者
全國百篇優(yōu)秀博士論文提名獎指導(dǎo)教師
河北省自然科學(xué)一等獎(排名第二)
教育部科技進步二等獎(排名第二)
教育部霍英東教育基金會高校青年教師研究三等獎
《利用DNA微陣列芯片研究擬南芥光調(diào)控發(fā)育過程》入選2002年度“中國高等學(xué)校十大科技進展”(論文第一作者,獲獎排名第三)
中國植物生理學(xué)會優(yōu)秀論文一等獎(排名第一)
北京市中關(guān)村高端領(lǐng)軍人才
河北省省管優(yōu)秀專家
河北省有突出貢獻的中青年專家
研究生招生專業(yè)方向
碩士研究生招生:植物學(xué)--植物發(fā)育分子機制
博士研究生招生:細胞生物學(xué)--植物發(fā)育生物學(xué)
研究方向
主要研究方向是植物發(fā)育和環(huán)境適應(yīng)的分子機制,研究內(nèi)容為基因表達調(diào)控在植物細胞分化和適應(yīng)環(huán)境的作用和機制。
基因表達的調(diào)控至少發(fā)生在兩個層面:轉(zhuǎn)錄調(diào)控和轉(zhuǎn)錄后調(diào)控?;蜣D(zhuǎn)錄調(diào)控是由基因組DNA和與其緊密結(jié)合的組蛋白構(gòu)成的染色質(zhì)的共價修飾狀態(tài)決定,即基因表達與否以及表達水平的高低在很大程度上取決于該基因染色質(zhì)的表觀遺傳修飾狀態(tài),而染色質(zhì)的修飾狀態(tài)又受細胞內(nèi)外信號的調(diào)控,并通過轉(zhuǎn)錄調(diào)控復(fù)合體對染色質(zhì)的共價化學(xué)修飾實現(xiàn)的?;虻目勺兗艚邮腔虮磉_轉(zhuǎn)錄后水平調(diào)控的主要方式,通過基因的可變剪接,同一個基因的前體mRNA通過內(nèi)含子保留、外顯子跳躍以及不同3’或5’剪接位點的識別可以產(chǎn)生多種mRNA,也因此可以產(chǎn)生以下三種結(jié)果:1,增加了每個物種細胞內(nèi)蛋白質(zhì)的復(fù)雜性(在基因組編碼基因數(shù)量一定的前提下增加了蛋白質(zhì)的種類);2,降低了最常見類型mRNA(簡單稱為有功能mRNA)的水平進而影響該基因的功能;3,可能產(chǎn)生對細胞有害的蛋白質(zhì),進而妨礙該基因編碼的正常形式蛋白的功能。所以,基因可變剪接的精度和效率對基因最終發(fā)揮功能有非常重要的調(diào)控作用。基因的可變剪接是由細胞內(nèi)的剪接復(fù)合體(Spliceosome)實施的,剪接復(fù)合體是一個由多個蛋白構(gòu)成的大的蛋白復(fù)合體,該復(fù)合體對前體mRNA剪接的精度和效率決定于組成該復(fù)合體的蛋白動態(tài)組裝和解離過程,剪接復(fù)合體組分的缺失會影響它對前體mRNA剪接的精度和效率。
我們實驗室前期研究結(jié)果證實SKIP既是轉(zhuǎn)錄復(fù)合體組分, 通過調(diào)控染色質(zhì)的修飾狀態(tài)調(diào)控基因的轉(zhuǎn)錄影響植物的發(fā)育; 同時SKIP還是剪接復(fù)合體的組分,通過調(diào)控基因的可變剪接影響植物對環(huán)境的適應(yīng)。我們實驗室將在上述工作的基礎(chǔ)上, 利用遺傳學(xué)、生物化學(xué)、細胞生物學(xué)和分子生物學(xué)手段分析植物發(fā)育和環(huán)境適應(yīng)的分子機制。
發(fā)表主要論文:
發(fā)表的論文被SCI收錄超過50篇,被SCI引用總次數(shù)超過5000次,其中單篇論文最高引用近400次(Ma et al., Plant Cell 2001),發(fā)表的主要論文有:
1.Wang Z, Li J, Chen S, Heng Y, Chen Z, Yang J, Zhou K, Pei J, He H*, Deng XW*, and Ma LG*. Poaceae-specific MS1 encodes a phospholipid-binding protein for male fertility in bread wheat. PNAS, 2017, in press(*通訊作者)
2.Li J, Wang Z, Hu Y, Cao Y and Ma LG*. Polycomb Group Proteins RING1A and RING1B Regulate the Vegetative Phase Transition in Arabidopsis. Front. Plant Sci. 2017, 8: 867. doi: 10.3389/fpls.2017.00867.(*通訊作者)
3.Feng, J., Ma, LG*. A Method for Characterizing Embryogenesis in Arabidopsis. Journal of Visualized Experiments, 2017, e55969, doi:10.3791/55969 . (*通訊作者)
4.Shang X, Cao Y and Ma LG*. Alternative Splicing in Plant Genes: A Means of Regulating the Environmental Fitness of Plants. Int. J. Mol. Sci. 2017, 18, 432; doi:10.3390/ijms18020432(*通訊作者)
5.Feng J, Li R, Ma S, Wu C, Li Y, Cao Y, Ma LG*. Protein N-terminal acetylation is required for embryogenesis in Arabidopsis. Journal of Experimental Botany, 2016, 67 : 4779–4789. (*通訊作者)
6.Feng J, Ma LG*. NatA is required for suspensor development in Arabidopsis. Plant Signaling & Behavior, 2016 11:e1231293(*通訊作者)
7. Li Y, Xia C, Feng J, Yang D, Wu F, Cao Y, Li L, Ma LG*. The SNW Domain of SKIP Is Required for Its Integration into the Spliceosome and Its Interaction with the Paf1 Complex in Arabidopsis. Molecular Plant. 2016, 9, 1040–1050. (*通訊作者)
8.Cao Y, Wen L, Wang Z, Ma LG*. SKIP Interacts with the Paf1 Complex to Regulate Flowering via the Activation of FLC Transcription in Arabidopsis. Molecular Plant, 2015, 8, 1816–1819. (*通訊作者)
9. Feng J, Li J, Gao Z, Lu Y, Yu J, Zheng Q, Yan S, Zhang W, He H, Ma LG*, Zhu Z*. SKIP Confers Osmotic Tolerance During Salt Stress by Controlling Alternative Gene Splicing in Arabidopsis. Molecular Plant, 2015, 8,1038–1052. (*通訊作者)
10. Ning YQ, Ma ZY, Huang HW, Mo H, Zhao T, Lin Li, Cai T, Chen S, Ma LG and He XJ. Two novel NAC transcription factors regulate gene expression and flowering time by associating with the histone demethylase JMJ14. Nucleic Acids Research, 2015, 43:1469-1484.
11. Yu Y, Wang J, Zhang Z, Quan R, Zhang H, Deng XW, Ma LG*, Huang R*. Ethylene promotes hypocotyl growth and HY5 degradation by enhancing the movement of COP1 to the nucleus in the light. PLoS Genetics, 2013, 9: e1004025.doi:10.1371/journal.pgen. 1004025. (*通訊作者)
12.Wang J, Yu Y, Zhang Z, Quan R, Zhang H, Ma LG, Deng XW, Huang R. Arabidopsis CSN5B interacts with VTC1 and modulates ascorbic acid synthesis. Plant Cell, 2013, 25:625-36. doi: 10.1105/tpc.112.106880
13.Zhang Z, Jones A, Joo HY, Zhou D, Cao Y, Chen S, Erdjument-Bromage H, Renfrow M, He H, Temps P,.Townes TM, Giles KE, Ma LG, and Wang H. USP49 deubiquitinates histone H2B and regulates cotranscriptional pre-mRNA splicing. 2013, Genes & Development, 27:1581–1595.
14.Zhao H., Liu L, Mo H, Qian L, Cao Y, Cui S, Li X, Ma LG*.The ATP-binding cassette transporter ABCB19 regulates postembryonic organ separation in Arabidopsis. PLoS ONE, 2013, 8(4): e60809. doi:10.1371/journal. pone. 0060809. (*通訊作者)
15.Wang X, Wu F, Xie Q, Wang H, Wang Y, Yue Y, Gahura O, Ma S, Liu L, Cao Y, Jiao Y, Puta F, McClung CR, Xu X, and Ma LG*. SKIP is a component of the spliceosome linking alternative splicing and the circadian clock in Arabidopsis. Plant Cell, 2012, 24: 3278–3295. (*通訊作者)
16.Yang HC, Cao Y, Han ZF, Mo HX, Fan D, Li H, Liu L, Yue YL, She C, Chai JJ, and Ma Ma LG*. A companion cell-dominant and developmentally-regulated H3K4 demethylase controls flowering time in Arabidopsis via the repression of FLC expression. PLoS Genetics, 2012, 8:e1002664. (*通訊作者)
17.Fan D, Dai Y, Wang X, Wang Z, He H, Yang H, Cao Y, Deng XW, and Ma LG*. IBM1, a JmjC domain-containing histone demethylase, is involved in the regulation of RNA-directed DNA methylation through the epigenetic control of RDR2 and DCL3 expression in Arabidopsis. Nucleic Acids Research, 2012, 40:8905-8916. (*通訊作者)
18.Zhao H, Wang X, Zhu D, Cui S, and Ma LG*. A single amino acid substitution in a IIIF bHLH transcription factor AtMYC1 leads to trichome and root hair patterning defects by abolishing its interaction with partner proteins in Arabidopsis. Journal of Biological Chemistry, 2012, 287:14109-14121. (*通訊作者)
19.Yang HC, Mo HX, Fan D, Cao Y, Cui SJ, and Ma LG*. Overexpression of a histone H3K4 demethylase, JMJ15, accelerated flowering time in Arabidopsis. Plant Cell Reports, 2012, 31:1297-1308. (*通訊作者)
20.Zhao H, Li X, and Ma LG*. Basic helix-loop-helix transcription factors and epidermal cell fate determination in Arabidopsis. Plant Signaling & Behavior, 2012, 7:1-5.(*通訊作者)
21.Wang X, Ma LG*. Unraveling the circadian clock in Arabidopsis. Plant Signaling & Behavior, 2012, 8(2): pii: e23014. (*通訊作者)
22.Cao Y and Ma LG*. Conservation and divergence of the histone H2B monoubiquitination pathway from yeast to humans and plants. Frontier Biology, 2011, 6:109-117. (*通訊作者)
23.Li W, Wang Z, Li J, Yang H, Cui S, Wang X, Ma LG*. Overexpression of AtBMI1C, a polycomb group protein gene, accelerates flowering in Arabidopsis. PLoS ONE 2011, 6: e21364. doi:10.1371/ journal.pone. 0021364(*通訊作者)
24.Lu SX, Liu H, Knowles SM, Li J, Ma LG, Tobin EM and Lin C. A role for protein kinase CK2 alpha subunits in the Arabidopsis circadian clock. Plant Physiology 2011, 157:1537-1545.
25.Ma LG. MicroRNAs and their targets from rice to Arabidopsis : half conserved and half diverged (invited comments). Frontier Biology, 2010, 5 :3-4.
26.Jiao YL, Tausta SL , Gandotra N , Sun N, Liu T, Clay NK, Ceserani T, Chen MQ, Ma LG, Holford M, Zhang HY , Zhao HY, Deng XW, Nelson T. A transcriptome atlas of rice cell types uncovers cellular, functional and developmental hierarchies. Nature Genetics, 2009, 41:258-263.
27.Cao Y, Dai Y, Cui SJ, Ma LG*. Histone H2B monoubiquitination is required for histone H3K4 methylation of FLC/MAFs chromatin and flowering time control in Arabidopsis. Plant Cell, 2008,20:2586-602. (*通訊作者)
28.Wu Y, Zhu Z, Ma LG, Chen M. The preferential retention of starch synthesis genes reveals the impact of whole-genome duplication on grass evolution. Mol. Biol. Evol., 2008, 25:1003-1006. doi: 10.1093/molbev/msn052
29. Wang XX, Ma LG*. Polycomb-group (Pc-G) proteins control seed development in Arabidopsis (Invited review). Journal of Integrative Plant Biology, 2007, 49: 52-59. (*通訊作者)
30.Qin G, Gu H, Ma LG, Peng Y, Deng XW, Chen Z, Qu LJ. Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Research, 2007, 17:471-482.
31. Jiao Y*, Ma LG*, Strickland E, Deng XW. Conservation and Divergence of Light-Regulated Genome Expression Patterns during Seedling Development in Rice and Arabidopsis. Plant Cell, 2005,17:3239-3256 (*并列第一作者).
32. Ma LG, Chen C, Liu X, Jiao Y, Su N, Li L, Wang X, Cao M, Sun N, Zhang X, Bao J, Li J, Pedersen S, Bolund L, Zhao H, Yuan L, Wong GKS, Wang J, Deng XW, and Wang J. An analysis of transcriptional regulation of the rice genome and its comparison to Arabidopsis. Genome Research,2005, 15:1274-1283.
33.Ma LG, Sun N, Liu X, Jiao Y, Zhao H, Deng XW. Organ-specific genome expression atlas during Arabidopsis development. 2005, Plant Physiology, 138:80-91.
34.Shen YP, Feng SH, Ma LG, Lin RC, Qu LJ, Chen ZL, Wang HY, Deng XW. Arabidopsis FHY1 protein stability is regulated by light via phytochrome a and 26S proteasome. Plant Physiology, 2005, 139:1234-124.
35.Feng S*, Ma LG*, Wang X, Xie D, Dinesh-Kumar S. P., Wei N, and Deng XW. The COP9 Signalosome Physically Interacts with SCFCOI1 and Modulates Jasmonate Responses. Plant Cell, 2003, 15:1083-1094 (*并列第一作者).
36.Ma LG, Zhao H, Deng XW. Analysis of the mutational effects of the COP/DET/FUS loci on genome expression profiles reveals their overlapping yet not identical roles in regulating Arabidopsis seedling development. Development, 2003, 130: 969-981.
37.Wu P, Ma LG, Hou XL, Wang MY, Wu YR, Liu FY, Deng XW Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiology, 2003, 1321260-1271.
38.Ma LG, Gao Y, Qu LJ, Chen ZL, Li JM, Zhao H, Deng XW. Genomic evidence for COP1 as a repressor of light-regulated gene expression and development in Arabidopsis. Plant Cell, 2002,14: 2383-2398.
39.Wang H*, Ma LG*, Habashi J, Li JM, Zhao H, Deng XW. Analysis of far-red light-regulated genome expression profiles of phytochrome A pathway mutants in Arabidopsis. Plant Journal, 2002, 32:723-734. (*并列第一作者).
40.Holm M, Ma LG, Qu LJ, Deng XW. Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes & Development, 2002, 16: 1247-1259.
41.Ma LG, Li JM, Qu LJ, Hager J, Chen ZL, Zhao H, Deng XW. Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell, 2001, 13: 2589-2607.
42. Wang H, Ma LG, Li JM, Zhao H, Deng XW. Direction interaction of Arabidopsis cryptochromes with COP1 in light control development. Science, 2001, 294:154-158.
43.Ma LG, Xu X, Cui S, Sun D. The presence of a heterotrimeric G protein and its role in signal transduction of extracellular calmodulin in pollen germination and tube growth. Plant Cell, 1999 11:1351–1363.
文章來源:2018年首都師范大學(xué)生命科學(xué)學(xué)院馬力耕導(dǎo)師考研調(diào)劑信..